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Abstract. The concept of a martingale is simple and can be used for various
applications in probability theory. We introduce the foundational background
and define the concept, develop it with some key theorems, and give some
applications in proving important results.

1. Introduction

Martingales are sequences of random variables where the expected value of
each term, with knowledge of all the previous terms, is equal to the value of the
previous term. In other words, at any given time, the conditional expectation of
the next value, given all of the past values, is simply the current value. Some
examples are the random walk and a gambler making a series of fair bets. (In
particular, terminology for martingales has long been oriented around the latter.)

Martingales are related to Markov chains, but not all martingales are Markov
chains and not all Markov chains are martingales, as the martingale definition
deals with only the expected value being equal, and Markov chains are based
only on knowing the next probabilities based on the present.

2. Filtrations and Foundation

In the standard definition with full generality, we can define martingales in
terms of σ-algebras, and more specifically, a filtration of them:

Definition 2.1. A σ-algebra (also known as a σ-field) on a set S is a collection
of subsets of S that include S and are closed over complement and countable
unions.

We use this collection to represent the knowledge at various times in the sto-
chastic process.

Definition 2.2. A filtration on the probability space (Ω,F , P ) is a sequence
{Fn : n = 1, 2, . . . } of sub-σ fields of F such that for all n, Fn ⊂ Fn+1.

The filtration represents the knowledge at successive betting times. Note that
it only increases, with each sub-σ field being a superset of the last.

Finally, we define what it means for a stochastic process, essentially a collection
of random variables, to be adapted to a filtration.
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Definition 2.3. A stochastic process X = {Xn, n = 1, 2, . . . }, is adapted to the
filtration (Fn) if for all n, Xn is Fn-measurable (i.e. a random variable).

In other words, an adapted process can’t “see into the future”: Xn isn’t known
until time n.

Although these definitions and concepts may seem contrived, they are broadly
used in probability theory and are useful for formalizing some general ideas, so
we will use them consistently in this text.

Another convention is that we will consistently use a.s. and a.e. to denote
almost surely and almost everywhere respectively, due to the cumbersomeness of
writing them out each time.

3. Martingales

The intuitive meaning of a martingale is essentially that E[Xn+1 | X1, . . . , Xn] =
Xn. However, this is not the most general definition. Using the terminology of
filtrations, we can write a martingale as:

Definition 3.1. A process X = {Xn, Fn, n = 1, 2, . . . }, is a martingale if for
each n = 1, 2, . . . ,

(1) {Fn, n = 1, 2 . . . } is a filtration and X is adapted to (Fn);
(2) for each n, Xn is integrable;
(3) for each n, E[Xn+1 | Fn] = Xn.

We can similarly define the more general submartingales :

Definition 3.2. A process X = {Xn, Fn, n = 1, 2, . . . }, is a submartingale if for
each n = 1, 2, . . . ,

(1) {Fn, n = 1, 2 . . . } is a filtration and X is adapted to (Fn);
(2) for each n, Xn is integrable;
(3) for each n, Xn ≤ E[Xn+1 | Fn].

A supermartingale is analogous, reversing the inequality.
Since we will only concern ourselves with processes where n = 1, 2, . . . for now,

we will usually omit that condition for brevity.

4. Stopping Times

One of the first major results about martingales we will examine is stopping
times (defined much the same as when examining Markov chains), as shown by
the notable Optional Stopping Theorem. One application of this result is formally
showing that any betting strategy that takes finite time will always lose money,
as long as the odds are in favor of the house.

Theorem 4.1 (Doob’s Optional Stopping Theorem). If X is a supermartingale
and T a stopping time, E[XT ] ≤ E[X0] if
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(1) X is bounded,
(2) T is bounded,
(3) or E[T ] <∞ and |Xn(ω)−Xn−1(ω)| is bounded by K.

Proof. Consider XT
n , defined as taking Xn if n ≤ T and XT otherwise. By

induction, E[XT
n − X0] ≤ 0. If T is bounded by N then E[XT ] ≤ E[X0], as

the sequence XT
n converges to E[XT ] uniformly. If X is bounded then the XT

n

sequence is converging to XT and are bounded, so the dominated convergence
theorem applies, giving E[XT ] ≤ E[X0]. In the last case we have

|XT
n −X0| = |

min{T, n}∑
k=1

(Xk −Xk−1)| ≤ KT.

E[KT ] <∞ so using the dominated convergence theorem on XT
n −X0 gives the

desired result. �

Note that considering −X proves the theorem in the case of a submartingale.
The inequality can be shown to have equality for the martingale case by the fact
that it must satisfy both the submartingale and the opposite supermartingale
inequality.

Example. A simple example is of a gambler who bets $1 on fair coin flips, with
a 1

2
probability of winning and a 1

2
probability of losing. Starting with $30, ey

continues betting until either running out of money or reaching $100, at which
point ey goes home. Knowing that this is a martingale, we can apply the Optional
Stopping Theorem to find that the expected value at a stopping time, say when
ey leaves, is equal to the initial expected value, or simply $30. Thus, there is a
0.3 chance that the gambler goes home with $100, and a 0.7 chance ey goes bust.

5. Key Lemmas

Several lemmas, generally useful in probability theory, are needed. Proving
them is non-trivial and outside the main focus of this text, but they will be used
as stated below:

Proposition 5.1 (Fatou’s Lemma). If Xn ≥ 0, then E[lim inf Xn] ≤ lim inf E[Xn].

Proposition 5.2 (Monotone Convergence Theorem). If Xn ↑ X a.s. and Xn ≥ 0
for all n, then E[Xn] ↑ E[X].

Notation. Xn ↑ X means Xn ⊆ Xn+1, for all positive integers n, and ∪Xn = X.

Proposition 5.3 (Dominated Convergence Theorem). If Xn → X a.s., |Xn| < Y
for all n, and E[Y ] <∞, then E[Xn]→ E[X].

One special case of the Dominated Convergence Theorem is where there is
some M ∈ R such that |Xn| ≤ M a.s. for all n. In this case, sometimes called
the Bounded Convergence Theorem, we can just take Y = M ∈ R.
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Proof. See [1] and [2]. �

There are several more laws that concern conditional expectation:

Theorem 5.4. Several laws:

(1) If Y is a version of E[X | G] then E[Y ] = E[X].
(2) If X is G measurable then E[X | G] = X a.s.
(3) E[a1X1 + a2X2] = a1E[X1 | G] + a2E[X2 | G] a.s.
(4) If X ≥ 0, then E[X | G] ≥ 0.
(5) If Xn is an increasing sequence of random variables converging to X point-

wise, then E[Xn | G] converges monotonically upwards to E[X | G] a.s.
(6) If |Xn(ω)| < V (ω) for all n, E[V ] <∞ and Xn converge to X pointwise,

E[Xn | G] converges to E[X | G].
(7) If c is a convex function on R and E(|c(X)|) < ∞ then E[c(X) | G] ≥

c(E[X | G]).
(8) If H ⊂ G, then E[E[X | G] | H] = E[X | H].
(9) If Z is a G measurable and bounded random variable, E[ZX | G] = ZE[X |
G] a.s.

(10) If H is independent of σ(σ(X),G), then E[X | σ(G,H)] = E[X | G] a.s.

Proof. See [3]. �

We also define the concept of convergence in L1 as follows:

Definition 5.5. Xn converges to a random variable X (defined on Ω) in Lp if

lim
n→∞

[|Xn −X | p] = 0.

We will mainly consider the case where p = 1.

6. Upcrossing and Integrability

Another important lemma is this, involving the interesting concept of an up-
crossing :

Lemma 6.1 (Doob Upcrossing Lemma). For an interval [a, b], ω fixed in a prob-
ability space, and X a supermartingale, we define the number of upcrossings by
time N as the largest k such that 0 ≤ s1 < t1 < s2 < t2 < ... < sk < tk ≤ N
and Xsi(ω) < a, Xti(ω) > b. Therefore, an upcrossing is a pair of times between
which the value of the sequence Xn(ω) goes from below a to above b. Let UN [a, b]
be the number of upcrossings by time N . Then, we have

(b− a)E[UN [a, b]] ≤ E[max(a−XN , 0)].

Proof. We use a martingale transform argument to get information about up-
crossings. If our gambler bets 1 starting when Xn is below a, and quitting when
Xn is above b they will make b− a for each upcrossing. If they continue this bet-
ting strategy until time N they will only lose a−XN after making b− a for each
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upcrossing. The total amount they have won until time n is a supermartingale
by the proposition on martingale transforms. Therefore the Optional Stopping
Theorem applies, giving the result. �

Lastly, we define the concept of uniform integrability of a martingale, which
will be used in a few proofs. The motivation is essentially that when we take
the limit of a sequence, we want the integrals, such as expectations, to converge
properly, allowing for the limit and integral to be swapped. Conveniently, this
condition is usually easy to verify for martingales.

Definition 6.2. A family of random variables C is uniformly integrable if for
each ε > 0 we can pick a real K such that for all X ∈ C,E[|X| | |X| > K] < ε.

Several lemmas can be shown concerning this condition.

Theorem 6.3. Let X ∈ L1. Then the class {E[X | G] | G sub-σ-algebra of F}
is uniformly integrable.

Proof. Let ε > 0. Then choose δ > 0 such that for F ∈ F , µ(F ) < δ implies
E[|X| | F ] < ε. Then choose K such that E[|X|] < δK. Now let G be a sub-
σ-algebra of F , and Y = E[X | G]. By Jensen’s inequality |Y | ≤ E[|X| | G], so
E[|Y |] ≤ E[|X|], and Kµ(|Y | > K) ≤ E[|Y |] ≤ E[|X|] so µ(|Y | > K) < δ. This
implies

E(|Y | | |Y | ≥ K) ≤ E(|X| | |Y | ≥ K) < ε.

�

Uniform integrability makes a.s. convergence into L1 convergence.

7. Convergence

Another key aspect of martingales is concerning their convergence, where sev-
eral interesting conclusions can be made.

Theorem 7.1 (Martingale Convergence Theorem). Let {Xn, Fn} be a submartin-
gale, and assume E[|Xn|] is bounded. Then with probability 1, there exists a finite
integrable random variable X∞ such that

lim
n→∞

Xn = X∞ almost everywhere.

Proof. First, we show that lim inf Xn(ω) = lim supXn(ω), using the upcrossing
inequality.

Suppose the sequence does not converge. Then there are rational numbers a
and b such that lim inf Xn(ω) < a < b < lim supXn(ω). It follows that there
exists a subsequence nk such that Xnk

(ω) → lim inf Xn(ω) and another subse-
quence nj such that Xnj

(ω) → lim supXn(ω), and specifically, Xnk
(ω) < a for

infinitely many k, and Xnj
(ω) > b for infinitely many j. This implies that there

are infinitely many upcrossings of [a, b]. Thus, if lim supXn(ω) > lim inf Xn(ω),
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there exist rational a < b such that the number of upcrossings of [a, b] is infinite.
Now for every pair r1 < r2 of rationals,

E[ν∞(r1, r2)] ≤ sup
n

E[(XN − a)+]/(b− a) ≤ sup
N

(E[|XN |] + a)/(b− a) <∞.

Hence, ν∞(r1, r2) 6= ∞ a.s., for each of the countable number of pairs (r1, r2)
of rationals. Thus for a.e. ω, lim supXn(ω) = lim inf Xn(ω). Thus the limit
exists a.e. but so far we haven’t shown it is finite. To see it is finite, note that
lim |Xn| exists a.s. and by Fatou’s Lemma, E[lim |Xn|] ≤ lim inf E[|Xn|] <∞. In
particular, lim |Xn| <∞ a.e. �

Thus, to show convergence of a martingale, submartingale, or supermartingale,
it is enough to show that its absolute expectation is bounded.

8. Applications

Martingales can be used to prove a variety of key results in probability theory.
We will look at one example, the proof of Kolmogorov’s Zero-One Law. We begin
with an important theorem necessary for the proof, the Lévy Upwards Theorem.

Theorem 8.1 (Lévy Upwards Theorem). Let X be a L1 random variable. Let
Fn be a filtration. Define Mn = E[X | Fn]. Then Mn is a martingale and Mn

converges to η = E[X | F∞] a.s. and in L1.

Proof. We start by looking at Y = E[Mn+1 | F ] = E[E[X | Fn+1] | Fn]. This is
a random variable that is Fn measurable and E[Y | F ] = E[X | F ] for F ∈ Fn,
so it is a.s. Mn. Each Mn is bounded in L1 by 5.4, so Mn is a martingale. It’s
also uniformly integrable by our earlier lemma, so M∞ exists and is in L1. Now
we only need to show M∞ = E[X | F∞]. Let F ∈ F∞. Then F ∈ Fn for some n.
Therefore,

E[M∞ | F ] = E[Mn | F ] = E[E[X | Fn] | F ] = E[X | F ].

Thus, M∞ = E[X | F∞] a.s. �

Definition 8.2. Let F1,F2, . . . be a sequence of σ-algebras such that Fi ⊂ Fj

whenever i < j. Then the tail algebra of the Fi is ∩jFj. The tail algebra of a se-
quence of random variables X1, X2, . . . is the tail algebra of Fi = σ(Xi, Xi+1, . . . ).

In other words, a tail event is an event defined in terms of an infinite sequence
of random variables, where even without having an arbitrary large (but finite)
chunk of the initial variables the occurrence can still be determined.

Theorem 8.3 (Kolmogorov’s Zero-One Law). Let X1, X2, . . . be a sequence of
independent random variables and T be the corresponding tail algebra. If F ∈ T ,
then P[F ] = 0 or 1.
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Proof. Define Fn := σ(X1, ..., Xn), then Fn is independent of Tn. Let F ∈ T ⊂
F∞ and η = 1F . (This means it is an indicator function, which is 1 when an
event happens and 0 when it does not.) By Levy’s Upward Theorem,

η = E[η | F∞] = lim
n→∞

E[η | Fn].

Since η is independent of every Fn, E[η | Fn] = E[η] = P[F ]. Hence η = P[F ],
a.s. Since η can only be 0 or 1, the result follows. �

Example. One example of a tail event is the probability that a random walk on
the integers, starting at 0 and biased with a probability p > 1

2
of going one step

to the right and 1 − p of going to the left, will reach (1) all positive x, and (2)
all negative x. By the Zero-One Law, the probability must be 0 or 1, and indeed
it is 1 in the former and 0 in the latter.

For our finale, we shall prove the strong form of the famous Law of Large
Numbers through applying martingale theory. We begin with one more needed
theorem, the Lévy Downwards Theorem.

Theorem 8.4 (Lévy Downwards Theorem). Let G−n ⊂ · · · ⊂ G−1 ⊂ F . Let
G−∞ = ∩kG−k. Let X be a L1 random variable. Then

E[X | G−∞] = lim
n→∞

E[X | G−n].

Proof. Let M−n = E[X | G−n]. From 5.4 we find that M−n is a martingale
starting at −N and ending at M−1. Using the Upcrossing Lemma, we find that
this converges to M∞ and then proceed as in the Upwards Theorem. �

Now the main proof:

Theorem 8.5 (Strong Law of Large Numbers). Let X1, X2, . . . be independent
identically distributed variables, with E[|X1|] < ∞ and m = E[X1]. Define Sn =∑n

i=1Xi. Then, Sn

n
→ m a.s. and E[Sn

n
−m]→ 0.

Proof. Let G−n = σ(Sn, Sn+1, . . . ). By 5.4, we then have E[X1 | G−n] = E[X1 |
σ(Sn)]. However, as E[X1 | σ(Sn)] = E[Xi | σ(Sn)] for i < n from the independent
and identically distributed condition, we have

E[X1 | σ(Sn)] =
E[X1 +X2 + · · ·+Xn | σ(Sn)]

n
=
Sn

n
.

Now E[X1 | G−n] satisfies the conditions for the Lévy Downward Theorem, so

we see that L = lim Sn

n
exists and converges in L1. L = lim sup Xk+1+···+Xk+n

n
for

each k, so we can apply Kolmogorov’s Zero-One Law to find that L is a constant,
since it does not depend on the first k Sk for any k. However, L = E[L] = m, so
we are done. �

The Law of Large Numbers is key in statistics. If Xn are independent ob-
servations of a process at different times or the data of a limited sample of a
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population, then this theorem formally shows that the mean of the variables will
approach the full average of the distribution as the sample size grows.
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