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Abstract. Umbral calculus is a long-studied theory in combinatorics that provides meth-
ods for representing sequences and can lead to interesting results. We introduce the history
of umbral calculus, from its shaky beginnings to its classical applications and finally the
sophisticated algebra used to formalize it. We focus on classic results with important poly-
nomials defined by generating functions, giving rise to identities for notable sequences and
combinatorical structures like the Bernoulli and Bell numbers. We also cover the concepts
of linear functionals used to ground umbral calculus in hard algebra, and show a proof of
the Lagrange Inversion Theorem using it.

1. Introduction to Umbral Calculus

Umbral calculus is from its beginnings a very surprising and fascinating field of study. At its
simplest, it is a method of representing series of the form

∑
anxn/n!, exponential generating

functions, and working with them to derive interesting new relations that were not possible
otherwise. The word “umbra”, meaning “shadow” in Latin, is used to denote the projection
of the power onto the index of a term in a sequence: a notational trick at first but now a
well-supported theory. In some sense, though, it can also be interpreted as reflecting the
shadowy mysteriousness of this method at first glance!

Some of the key ideas, like some polynomial sequences xn (e.g. the falling factorial)
mirroring the power sequence xn, go back to Barrow and Newton in the 17th century. Real
formal inquiry was only done in the late 19th century, though, starting with Cayley, Blissard,
and Sylvester (who invented the name umbral calculus). Still, umbral calculus was mostly
a magic method, without an axiomatic basis. The work of Steven Roman and Gian-Carlo
Rota, among others, finally developed umbral calculus into a formal theory. They used the
idea of working with linear functionals on a vector space of polynomials, mapping them to
the elements of a relevant sequence.

Some later works on umbral calculus have further abstracted the notation to focus on alge-
braic developments in a very wide field. The language of umbral calculus based on functionals
applied to polynomials allows everything from Mittag–Leffler functions to trigonometry to
be reinterpreted. We will mostly focus on key classical results working with polynomials
defined by exponential generating functions, which give us interesting findings in polyno-
mial sequences and combinatorical identities. At the end, a proof of the Lagrange inversion
theorem without the need for complex analysis shows the versatility of umbral calculus’s
functionals.

2. Early Umbral Calculus

For a prelude, here is an example from [1] of some of the early “magical” relationships
between sequences and certain powers that led to the development of umbral calculus: In
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the case of the falling factorial (x)n = x(x − 1) · · · (x − n + 1), we note that just like xn

counts the number of functions from an n-element set to an x-element set, (x)n counts the
number of injections. As the derivative maps xn to nxn−1, the forward difference (written
as ∆f(x) = f(x + 1) − f(x)) maps (x)n to n(x)n−1. Also, polynomials can be expressed in
terms of xn via Taylor’s theorem

f(x+ a) =
∞∑
n=0

an
f (n)(x)

n!

while Newton’s theorem similarly gives for (x)n

f(x+ a) =
∞∑
n=0

(a)n
∆nf(x)

n!
.

And just as (x+ y)n can be expanded using the binomial theorem as

(x+ a)n =
∞∑
k=0

(
n

k

)
akxn−k,

(x+ y)n can be expanded with the Chu-Vandermonde identity (
(
m+n
r

)
=
∑r

k=0

(
m
k

)(
n

r−k

)
) to

give

(x+ a)n =
∞∑
k=0

(
n

k

)
(a)k(x)n−k.

These sorts of connections were assuredly fascinating, but for the longest time lacked much
basis in proof!

3. The Linear Functional Basis

As mentioned in the introduction, umbral calculus was considered to be a sort of magic
rule: it could lead to results by raising and lowering some indices in equations, but the actual
foundational basis for it was weak. Putting it on solid ground required the idea, introduced
by Rota in [6], of a linear functional :

Definition 3.1 (Linear functional). A linear functional, or linear form, is a linear map from
a vector space to its field of scalars.

Here, we look at mappings from sequences of polynomials xn onto related sequences an.
We call this a linear functional L, and write it like the bra-ket notation used in physics as

⟨L | xn⟩ = an.

This linear functional L is what was called an umbra by the early explorers of umbral
calculus, but back then it was less a rigorous algebra and more a haphazard rule.

Note that two linear functionals L and M are equal if and only if

⟨L | pn(x)⟩ = ⟨M | pn(x)⟩
for all pn(x) in a polynomial sequence. We call this the spanning argument and will refer
back to it in later proofs.

For the sake of notation, we have P denote the algebra of all polynomials in x, and P∗
the vector space of all linear functionals on P . We will also use linear operators, which map
a vector space to itself.
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Definition 3.2 (Delta functional). A delta functional is a linear functional L that satisfies
⟨L | 1⟩ = 0 and ⟨L | x⟩ ≠ 0.

We can associate a formal power series to any linear functional M given a delta functional
L: if

M =
∞∑
k=0

akL
k,

we associate to M the formal power series

f(t) =
∞∑
k=0

akt
k,

which is called the indicator of M .
We define the conjugate sequence of a delta functional L as the polynomial sequence

qn(x) =
∑
k>0

〈
Lk | xn

〉
k!

xk.

This sequence is said to be the reciprocal of the associated sequence of the delta functional.
Setting up these formal constructs will enable us to give rigorous justification for our

results that follow.

4. Sheffer Polynomials

Umbral calculus is a powerful way to work with polynomial sequences. Much of the study
of umbral calculus deals with a certain class of these sequences, named after Isador Sheffer.

Recall that earlier we mentioned analogies between the falling factorial sequence and the
powers of x. In fact, the falling factorial sequence can be seen to be a subset of a class
of sequences satisfying p′n = npn−1, known as Appell sequences (or sequences of Appell
polynomials) after Paul Appell who studied them in the 19th century.

Definition 4.1 (Appell sequence). An Appell sequence is any sequence of polynomials
denoted pn(x), where p0(x) is a non-zero constant and

d

dx
pn(x) = npn−1(x)

In 1939, Sheffer noticed the umbral relationships we have described, and based on these
ideas, Sheffer extended these into what are now called Sheffer sequences.

Definition 4.2 (Sheffer sequence). A polynomial sequence sn(x) is a Sheffer sequence rela-
tive to a sequence pn(x) of binomial type if it satisfies the functional equation

sn(x+ y) =
n∑

k=0

(
n

k

)
sk(x)pn−k(y)

for all n ⩾ 0 and for all y ∈ K.
Equivalently, a polynomial sequence sn(x) is a Sheffer sequence if and only if there exist

a sequence of binomial type pn(x) and an invertible shift-invariant operator P such that

pn(x) = Psn(x)
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for all n ⩾ 0. Shift-invariance here simply means shifting (translating) the inputs shifts the
outputs by the same amount, and swapping the order of the operator with a translation does
not change the result (i.e. it commutes with translation operators).

As an example, we will present one generalized identity for Appell polynomials found in
[3]. More detailed investigations of Sheffer sequences can be found in [4] and [7].

Proposition 4.3. Let m,n be non-negative integers. Then
n∑

k=0

(
n

k

)
yn−kpm+k(x) =

m∑
k=0

(
m

k

)
(−y)m−kpn+k(x+ y).

Proof. We can let An be the umbra An = an. Then from the definition of Appell sequences
we can obtain the power series form∑

n≥0

pn(x)
tn

n!
= e(A+x)t,

giving the umbral representation pn(x) = (A+ x)n. Then

(A+ x+ y)n(A+ x)m = (A+ x+ y)n(A+ x+ y − y)m

=
m∑
k=0

(
m

k

)
(−y)m−k(A+ x+ y)n+k

=
m∑
k=0

(
m

k

)
(−y)m−kpn+k(x+ y),

and on the other hand,

(A+ x+ y)n(A+ x)m =
n∑

k=0

(
n

k

)
yn−k(A+ x)m+k =

n∑
k=0

(
n

k

)
yn−kpm+k(x).

Equating the two expressions for (A+ x+ y)n(A+ x)m gives the identity. □

5. Bernoulli Numbers

Here are some applications of umbral calculus to Bernoulli numbers. Mainly “classical”
methods are used, with less linear functional algebra.

Definition 5.1 (Bernoulli numbers). The Bernoulli numbers appear in a variety of contexts
and have recursive and explicit forms. Here we give the exponential generation function:

B(x) =
∞∑
n=0

Bn
xn

n!
=

x

ex − 1

Finding these numbers are one of the quintessential examples of umbral calculus in prac-
tice. Using an umbral “magic trick” found in [1] they can be derived as

∞∑
n=0

Bn
xn

n!
≃

∞∑
n=0

Bnx
n

n!
= eBx,

then
e(B+1)x − eBx = x,
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after which looking at coefficients in the form xn

n!
gives

(B + 1)n −Bn ≃

{
0 if n ̸= 1,

1 if n = 1.

Expanding this using the Binomial Theorem and changing the superscript powers back to
subscript indices, we can obtain the relation

n−1∑
k=0

(
n

k

)
Bk =

{
0 if n ̸= 1,

1 if n = 1.

A standard proof can be done by looking at the power series (ex − 1) /x).
We give a more formal presentation found in [2], based on the work by Rota and Taylor

in [5]. The Bernoulli numbers Bn are defined by the exponential generating function

B(x) =
∞∑
n=0

Bn
xn

n!
=

x

ex − 1
.

Since this implies that exB(x) = x + B(x), the Bernoulli umbra B defined by Bn = Bn

satisfies
(B + 1)n = Bn + δn−1,

where δm is 1 if m = 0 and is 0 otherwise. (This notation is known as the Kronecker delta
and is a somewhat more convenient alternative to the cases used earlier.) Then by linearity
we see that for any admissible formal power series f ,

(∗) f(B + 1) = f(B) + f ′(0).

Iterated this gives

f(B + k) = f(B) + f ′(0) + f ′(1) + · · ·+ f ′(k − 1)

for any nonnegative integer k, and we are done.
There are three other important basic identities for the Bernoulli umbra.

Theorem 5.2. The following are true:

(i) (B + 1)n = (−B)n.
(ii) (−B)n = Bn for n ̸= 1, with B1 = −1

2
. Thus Bn = 0 when n is odd and greater than

1 .
(iii) For any positive integer k,

kBn = (kB)n + (kB + 1)n + · · ·+ (kB + k − 1)n.

Proof. We prove “linearized” versions of these formulas: for any polynomial f , we have

f(B + 1) = f(−B)

f(−B) = f(B) + f ′(0)

kf(B) = f(kB) + f(kB + 1) + · · ·+ f(kB + k − 1).

The second equation is a direct consequence of the first equation and (∗). We prove the
other two by choosing polynomials so that they follow from (∗) as well.
For the first equation, we take f(x) = xn − (x− 1)n, where n ≥ 1. Then

f(B + 1) = (B + 1)n −Bn = δn−1,
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and since f(−x) = (−1)n−1f(x+ 1), we have

f(−B) = (−1)n−1f(B + 1) = (−1)n−1δn−1 = δn−1 = f(B + 1).

For the third equation, we take f(x) = (x+ 1)n − xn, where n ≥ 1. Then f(B) = δn−1 and

k−1∑
i=0

f(kB + i) =
k−1∑
i=0

(kB + i+ 1)n −
k−1∑
i=0

(kB + 1)n

= (kB + k)n − (kB)n = kn ((B + 1)n −Bn)

= knδn−1 = kδn−1 = kf(B).

□

6. Combinatoric Identities

Since the classic formulation of umbral calculus is based on generating functions, one may
expect that its techniques may be applied to a range of combinatorical problems. Indeed,
elegant relations for important sequences like the Bell numbers and powerful arguments for
counting problems can be derived with the power of the umbra.

Definition 6.1 (Bell numbers). Bn is the number of ways to partition a set with length n.
A simple expression among many is the exponential generating function

∞∑
n=0

Bn

n!
xn = ee

x−1.

(Note: Here B is used to denote the Bell numbers, not Bernoulli numbers as done earlier.)
This can be proven in multiple ways, including analytical combinatorics, but we will give

a proof of it along with multiple other exciting relations based only on umbral calculus. The
source is [6], where some of the linear functional theory was first presented.

We consider an finite set U with u > 0 elements. We look at the structure of the set US

of functions with domain S, a set with n elements, and range a subset of U . It is simple to
find that there are un distinct such functions. Now in further detail:
Every function f : S → U has an associated partition π of the set S, called the kernel of

f , defined so that two elements a and b of S belong to the same block of π if and only if
f(a) = f(b).
How many distinct functions are there with a given kernel π?To find this, we let N(π)

be the number of distinct blocks of the partition π. A function having kernel π has to take
distinct values on distinct blocks of π. Therefore, such a function takes N(π) distinct values,
and the number of distinct such functions is equal to the number of one-to-one functions
from a set of N(π) elements to the set U . It is also easy to find that number as being
u(u−1) · · · (u−N(π)+1) = (u)N(π). (This is the falling factorial of u with exponent N(π).)

Every function has a unique kernel, so we have for all integers u > 0

(∗)
∑
π

(u)N(x) = un,

where the sum on the left ranges over all partitions π of the set S.
Now onto the main idea: let V be the vector space over the reals consisting of all poly-

nomials in u. Any sequence of polynomials of degrees 0, 1, 2, · · · , is a basis for this vector
space — in particular, the sequence (u)0 = 1, (u)1, (u)2, (u)3, · · · . Since a linear functional L
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on V is uniquely determined by arbitrary assigning the values it takes, there exists a unique
linear functional L on V such that

L(1) = 1, L ((u)k) = 1, k = 1, 2, 3, · · · .
Applying L to both sides of (∗) we obtain∑

x

L
(
(u)N(x)

)
= L (un) ,

but, by the definition of L, the left side simplifies to a sum of as many ones as there are
partitions of the set S. In other words, we may simplify the above to

Bn = L (un) .

This is the explicit expression for the Bell numbers we want. From this, we can get more
useful properties.

We start by deriving the recursion formula for the numbers Bn,

Bn+1 =
n∑

k=0

(
n

k

)
Bk.

Now, since u(u− 1)n = (u)n+1, we have L (u(u− 1)n) = 1 = L ((u)n). Since the polynomials
1, (u)n for n = 2, 3, · · · form a basis for the vector space V , it follows from the linearity of
L, that

L(up(u− 1)) = L(p(u))

for every polynomial p. Specifically, for p(u) = (u+ 1)n we obtain

L
(
un+1

)
= L ((u+ 1)n) ,

which is the recursion formula we want.
We can derive the generating function directly from our explicit expression as well. We

have
∞∑
n=0

Bn

n!
xn =

∞∑
n=0

L (un)

n!
xn = L (eux) .

Then, setting ez = 1 + v and expanding (1 + v)u by the binomial theorem gives

∞∑
n=0

Bn

n!
xn = L ((1 + v)u) = L

(
∞∑
n=0

(u)n
n!

vn

)
=

∞∑
n=0

L ((u)n)

n!
vn

= ev = ee
x−1.

It is possible to do the above proof without the linear functional L, but it is simpler to do
so with it, as with many other classical umbral calculus results.

The next result we will look at is by way of [4], and features heavy use of linear functional
algebra to give another excellent proof of Cayley’s formula.

Theorem 6.2 (Cayley’s formula). The number of rooted, labeled trees on n vertices is nn−1.

Proof. Following the terminology Rota used, we define a store σ as a set, in general infinite,
together with a map d that assigns every element of σ a positive integer, called its degree.
The subset of σ consisting of all elements of a given degree is assumed to be finite. Here
the elements of σ are structures and we want to count σ, i.e. to determine the number an
of elements of σ of degree n. We call an the counting sequence of σ, and we assume that
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a1 > 0. We also define the generating functional of σ as the delta functional L satisfying
⟨L | xn⟩ = an.

The partitional of a store σ is a second store part (σ) defined so that an element p of part
(σ) is a set (not a sequence) of pairs {(B1, s1) , . . . , (Bk, sk)}, where

(i) the Bi are the blocks of a partition of the set {1, 2, . . . , n}, for some n (hence Bi is
nonempty);

(ii) the si are elements of the store σ;
(iii) the degree of si equals the number of elements in Bi.

Every such element p, called a part of part (σ) has an associated degree d(p) of p (the sum
of the degrees of si), and a part number of p (the number of blocks).
The partitional part (σ) is obtained by letting n range over all positive integers. We let

bn,k be the number of elements of part (σ) of degree n and part number k, and call it the
counting sequence of the partitional. We set b0,0 = 1. Since a1 > 0, we have bn,n > 0 for all
n.

Let σ be the store whose elements of degree n are all rooted labeled trees on n vertices.
Then part (σ) is the set of forests. Letting bn,k be the number of elements of part (σ) of
degree n and part number k, we have the recursion obtained by removing the root of a tree
and counting the resulting forest:

bn,1 = n
∑
k

bn−1,k

In terms of the generating functional, this becomes

⟨L | xn⟩ = n
∑
k

〈
Lk | xn−1

〉
k!

=
〈
eL | Dxn

〉
=
〈
AeL | xn

〉
and thus L = AeL. We seek the conjugate sequence for L. But A = Le−L = f(L) and so
L = f−1(A) and L = f(A) = Ae−A. Thus we see that L is the Abel functional and∑

k

bn,kx
k = x(x+ n)n−1

Therefore,

bn,k =

(
n− 1

k − 1

)
nn−k

and the numbers of rooted labeled trees on n vertices is nn−1. □

Owing to the limited scope of this paper, we have only scratched the surface of what may
be studied with umbral calculus in combinatorics alone. Suggested topics for further inquiry
are the Nörlund polynomials which extend the Bernoulli numbers, the applications of umbral
calculus to idemtities in Stirling numbers and Euler numbers, and more. The opportunities
for applying umbral calculus are nearly as large as the field of combinatorics.

7. Lagrange Inversion Theorem

We conclude with a proof of the Lagrange Inversion Theorem, found in [4], which nicely
illustrates the power of the modern theory of umbral calculus based on linear algebra.
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We first recall the basics of linear operator adjoints. Let T be a linear operator mapping
P into itself. The adjoint T ∗ of T is the operator mapping P ∗ into itself defined by

⟨T ∗(L) | p(x)⟩ = ⟨L | Tp(x)⟩
for all L ∈ P ∗ and all p(x) ∈ P . The adjoint T ∗ of a linear operator T on P exists and is
continuous.

Theorem 7.1 (Expansion Theorem). Let M be a linear functional and let L be a delta
functional with associated sequence pn(x). Then

M =
∞∑
k=0

⟨M | pk(x)⟩
k!

Lk.

Proof. The result follows from the spanning argument, noting that
∞∑
k=0

⟨M | pk(x)⟩
k!

〈
Lk | pn(x)

〉
=

n∑
k=0

⟨M | pk(x)⟩
k!

n!δn,k = ⟨M | pn(x)⟩ .

□

Proposition 7.2. The polynomial sequence pn(x) is the associated sequence for the delta
operator Q if and only if it satisfies the following conditions: (i) p0(x) = 1, (ii) pn(0) = 0
for n > 0, (iii) Qpn(x) = npn−1(x).

Proof. Let Q = µ(L) and suppose first that pn(x) is the associated sequence for Q, and hence
for L. Then 〈

Lk | Qpn(x)
〉
=
〈
Lk+1 | pn(x)

〉
= n!δk+1,n =

〈
Lk | npn−1(x)

〉
.

Therefore, by the Expansion Theorem,

⟨M | Qpn(x)⟩ = ⟨M | npn−1(x)⟩
for every lincar functional M , and thus Qpn(x) = npn−1(x). Conversely, suppose the poly-
nomial sequence pn(x) satisfies (i), (ii), and (iii). Then

〈
Lk | pn(x)

〉
=
〈
ϵ | Qkpn(x)

〉
= ⟨ϵ | (n)kpn−k(x)⟩ = n!δn,k

so that pn(x) is the associated sequence for L. □

Theorem 7.3 (Transfer Formula). If Q = PD is a delta operator, where P is an invertible
shift-invariant operator, and if pn(x) is the associated sequence for Q, then for all n ⩾ 0,

pn(x) = Q′P−n−1xn

Proof. Letting qn(x) = Q′P−n−1xn, we see that

Qqn(x) = PDQ′P−n−1xn = nqn−1(x)

and thus by (7.2) we need only show that q0(x) = 1 and qn(0) = 0 for n > 0. It is clear that
q0(x) is a constant. Furthermore,

⟨ϵ | q0(x)⟩ =
〈
ϵ
∣∣Q′P−1

∣∣〉 = 〈ϵ | (P +DP ′)P−11
〉

= ⟨ϵ | 1⟩ = 1



10 ANDREW CHANG

and we have q0(x) = 1. For n > 0,

⟨ϵ | qn(x)⟩ =
〈
ϵ | Q′p−n−1xn

〉
=
〈
ϵ | (P +DP ′)P−n−1xn

〉
= ⟨ϵ | P nxn⟩+

〈
ϵ | nP ′P−n1xn−1

〉
=
〈
ϵ | P−nxn

〉
−
〈
ϵ |
(
P−n

)′
xn−1

〉
=
〈
ϵ | P−nxn

〉
−
〈
µ−1

(
P−n

)
| xn

〉
= 0

Thus qn(0) = 0 for n > 0 and the theorem is proved. □

The Abel polynomials An(x, a) = x(x − an)n−1 are the associated polynomials for the
Abel functional ϵaA, where

⟨εaA | p(x)⟩ = p′(a).

The indicator of the Abel functional is the series teat.

Theorem 7.4 (Lagrange Inversion Theorem). Suppose z is defined as a function of w by
an equation of the form

z = f(w)

where f is analytic at a point a and f ′(a) ̸= 0. Then it is possible to invert or solve the
equation for w, expressing it in the form w = g(z) given by a power series,

g(z) = a+
∞∑
n=1

gn
(z − f(a))n

n!

where

gn = lim
w→a

dn−1

dwn−1

[(
w − a

f(w)− f(a)

)n]
Proof. The notation we have now makes Lagrange’s inversion formula almost trivial. It
states that if f(t) is a delta series, then the nth coefficient in f−1(t)k equals the (n− k) th
coefficient in (f(t)/t)−n, multiplied by k/n. In our notation, this reads〈

L̃k | xn
〉

n!
=

k
〈
M−n | xn−k

〉
n

,

where the indicator of L = AM is f(t). The verification of this fact is now a trivial com-
putation with adjoints. If pn(x) is the associated sequence for L, then using the Transfer
Formula we find〈

L̃k | xn
〉
=
〈
Ak | pn(x)

〉
=
〈
Ak | xµ(M)−nxn−1

〉
=
〈
kAk−1 | µ(M)−nxn−1

〉
= k

〈
Ak−1M−n | xn−1

〉
= k

〈
M−n | Dk−1xn−1

〉
=

k

n
(n)k

〈
M−n | xn−k

〉
as desired. □
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