
QUATERNIONIC ANALYSIS

ANDREW CHANG

Abstract. Quaternions are a four-dimensional algebra invented by William Rowan
Hamilton that extend the complex numbers and are used abstract algebra, physics,
and other fields. Although extending complex analysis to quaternions requires aban-
doning commutativity and equivalence between holomorphicity, analyticity, etc., many
analogues to key ideas have been found, and even some interesting connections with
modern physics. We give a survey of the work’s basis and major results, beginning
with the basics of quaternions and proceeding to a quaternion version of Cauchy’s
integral formula. At the end, we give a medley of applications.

1. Introduction to Quaternions

Quaternions are a four-dimensional algebra that extend the concept of complex num-
bers to form a new number system. They have been a subject of investigation in areas
like abstract algebra, number theory, and applications to physics, mechanics, and com-
puter modeling. Found by William Rowan Hamilton [5] in 1843, they were eventually
displaced by vector algebra for the most part in physics and mathematics. However,
quaternions still provide useful representations, are well researched algebraically, and in
some cases are more suited for computations, leading to sustained interest from many
fields.

Much work has been done to extend complex analysis into higher dimensions with
quaternions, especially by the Swiss mathematician Fueter [4] (summarized in English
by Deavours [1] and expanded by Sudbery [10]) with fair success. Although quaternions
lose the important notions of the commutative property and the equivalence of holo-
morphicity, analyticity, etc., many analogues to complex analytic examples have been
found, and even some interesting connections with modern physics. We summarize the
work’s basis and key results here, though some longer proofs are omitted.

The set of quaternions is represented by H, and is formally a 4-dimensional vector
space over R, with a basis of 1, i, j, k where i, j, k are the basic quaternions (behaving
much in the same way as the imaginary unit i).

Definition 1.1 (Quaternions). A quaternion can be represented as a formal linear
combination in the form q = w + xi+ yj + zk, where w, x, y, z ∈ R.

One might wonder whether it is possible to extend the quaternions to a similar algebra
with three dimensions or even more than four. It is actually not possible to construct
a number space that is a real division algebra (meaning addition/multiplication satisfy
ring axioms, division is possible, scalar multiplication works) beyond the reals, complex
numbers, and quaternions [3]. In fact, the Cayley–Dickson construction defines an

Date: May 18, 2021.

1



2 ANDREW CHANG

algebra similar to a direct sum, but with a different multiplication and a conjugation
function, and allows for higher powers of two as dimensions, leading to the octonions (8)
and sedenions (16), etc., but more and more fundamental properties are lost — notably,
not even associativity works, and zero has multiple divisors. [9]

Definition 1.2. Multiplication between the basic quaternions can be summed up by
the basic property that

i2 = j2 = k2 = ijk = −1

and that each of i, j, k are anticommutative, meaning that

ij = −ji
and so on for any two of the three. Consequently, we also have

ij = k, jk = i, and ki = j.

Sometimes in calculations we may abbreviate by writing the quaternions i, j, k as ei
for i = 1, 2, 3, and similarly the parts x, y, z as xi for i = 1, 2, 3. We can thus use the
Einstein summation convention to write, for example, a quaternion q as w + xiei.

Definition 1.3. The conjugate of a quaternion q is

q = w − xi− yj − zk.

Note that q commutes with q and their product is

qq = w2 + x2 + y2 + z2.

We also define the modulus:

Definition 1.4. The modulus of a quaternion q is

|q| =
√
w2 + x2 + y2 + z2 =

√
qq.

Thus, the multiplicative inverse for non-zero quaternions is

q−1 =
q

|q|2
.

The center of the algebra H is R (real numbers always commute). Also, for any
quaternion q the vector space spanned by 1 and q is a subfield of the quaternions, and
if 1 and q are linearly independent this subfield is isomorphic to C. If we specifically
consider the subfield spanned by 1 and i to be C, then a quaternion can also be expressed
as

q = (w + xi)1 + (y + zi)j,

since ij = k, or simply the ordered pair (w + xi, y + zi) (essentially expressing a four-
dimensional number as two two-dimensional numbers).

Quaternions can also be represented in various other forms, such as as a scalar part
w and vector part xi+ yj + zj, and as a 2× 2 matrix[

w + xi y + zi
−y + zi w − xi

]
.

The latter form has the advantage of quaternion addition and multiplication corre-
sponding to matrix operations, the norm being related to the determinant, and other
properties like a relationship with Pauli matrices for spin in quantum mechanics. [7]
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2. Differential Forms

We use several differential forms to express the varying concepts of differntiability
for quaternionic functions.

Definition 2.1. The gradient operator for a function f : H→ H is defined by

� =
∂

∂t
+ i

∂

∂x
+ j

∂

∂y
+ k

∂

∂z

Definition 2.2. The Laplace operator for a function f : H→ H is defined by

∆f =
∂2f

∂t2
+
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

Definition 2.3. The differential of a function f : H→ H is defined as the 1-form

df =
∂f

∂w
dw +

∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz

where w, x, y, z are the parts of a quaternion as previously defined. A function is then
considered (real-)differentiable if this exists (in contrast to any other potential notions
of differentiability for quaternions).

Definition 2.4. The differential at a point q ∈ H is then defined to be dfq : H → H,
giving a R-linear map.

We also define the differential forms dq and Dq:

Definition 2.5. The differential of the identity function, dq, is defined as

dq = dw + idx+ jdy + kdz.

Definition 2.6. Then we define Dq as a trilinear function so

〈h1, Dq (h2, h3, h4)〉 = v (h1, h2, h3, h4) ,

so geometrically Dq(a, b, c) is a quaternion perpendicular to a, b, c with the magnitude
of the parallelepiped with edges a, b, c. (This aspect is analogous to the cross product
in vector algebra.)

3. Regular Functions

In quaternionic analysis, unlike complex analysis, the notions of holomorphicity, an-
alyticity, harmonicity, and conformality do not coincide. In this section, however, we
provide analogues to these ideas in the context of quaternions and introduce regular
functions, the main subjects of our analysis.

Definition 3.1 (Holomorphicity). A quaternionic function f is quaternion-differentiable
on the left at a point q if the limit

df

dq
= lim

h→0

f(q + h)− f(q)

h

exists as h→ 0 from any direction in H.

This strict definition is not very useful, since even simple functions like q2 are di-
rectionally dependent. Indeed, the only quaternion-differentiable functions are linear,
although the proof is somewhat involved and beyond the scope of this paper.
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Proposition 3.2. If a function is quaternion-differentiable on a connected open set U ,
then on U it must be of the form f(q) = a+ qb where a, b ∈ H.

Proof. See [10]. �

Definition 3.3. A quaternionic monomial is a function f : H→ H of the form

f(q) = Πr
i=0aiq

where r is the degree of the monomial and a0, . . . , ar are constant quaternions.

A quaternionic polynomial is then a finite sum of quaternionic monomials.

Proposition 3.4. This notion of analyticity is equivalent to the notion of a function
being real-analytic in 4 real variables.

Proof. We can write any polynomial function f as

f(q) = f0(w, x, y, z) +
∑
i

fi(w, x, y, z)ei

where f0 and fi are four real-valued polynomials in the four real variables w, x, y, z.
But

w = 1
4(q − iqi− jqj − kqk),

x = 1
4i(q − iqi+ jqj + kqk),

y = 1
4j (q + iqi− jqj + kqk),

z = 1
4k (q + iqi+ jqj − kqk).


By substituting these expressions for w, x, y, z in the polynomials f0, fi, we get f(q)
as a sum of expressions in q that are quaternionic monomials, so f is a quaternionic
polynomial. �

Definition 3.5 (Harmonicity). Harmonic functions are those which satisfy Laplace’s
equation, which for a function on Rn is

∂2f

∂x21
+
∂2f

∂x22
+ · · ·+ ∂2f

∂x2n
= 0.

In the context of quaternions, this means that a function f(q) satisfies the equation

∂2f

∂a2
+
∂2f

∂b2
+
∂2f

∂c2
+
∂2f

∂d2
= ∆f = 0.

In complex analysis, real and imaginary parts of holomorphic functions are harmonic,
but this correspondence does not exist in quaternionic analysis. Nevertheless, harmonic
functions are useful for constructing regular functions.

Quaternionic analysis brings with it from complex analysis the geometric concept of
conformality, however.

Definition 3.6 (Conformality). Conformal mappings in quaternionic analysis are the
same as those in complex analysis; they are mappings which are locally angle-preserving.

Theorem 3.7. The conformal group (or group of all conformal mappings) of H, and
consists of functions of the form

f(q) = (aq + b)(cq + d)−1.
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Proof. We let C be the group of orientation-preserving conformal mappings of H∗, and
let D be the set of mappings of the form above. Then if f ∈ D, f has differential

dfq =
(
ac−1d− b

)
(cq + d)−1cdq(cq + d)−1.

This is of the form αdqβ, which is a dilatation and a rotation combined, so f is conformal
and orientation-preserving. Therefore, D is a subset of C. Now C is generated by
rotations, dilatations, translations and the inversion in the unit sphere followed by a
reflection, i.e. by the mappings q 7→ αqβ, q 7→ q + γ and q 7→ q−1. If a mapping in D
is followed by any of these mappings, it remains in D; hence CD ⊆ D. It follows that
D = C. �

Definition 3.8. We define the left and right Cauchy–Fueter equations as follows:

∂lf

∂q̄
=
∂f

∂a
+ i

∂f

∂b
+ j

∂f

∂c
+ k

∂f

∂d
,

∂rf

∂q̄
=
∂f

∂a
+
∂f

∂b
i+

∂f

∂c
j +

∂f

∂d
k.

Definition 3.9 (Regular function). The main functions of interest in quaternionic
analysis are regular functions. A quaternionic function is left- or right-regular if

∂lf

∂q̄
= 0 or

∂rf

∂q̄
= 0,

respectively.

These functions are harmonic and real-analytic, as we will show, but sadly not holo-
morphic or conformal. Counterintuitively, not even the identity function is regular. As
we will see, one of the key motivations for this looser definition is we can adapt the
Cauchy formula to quaternions.

4. Constructing Regular Functions

There are two ways to construct regular functions from real harmonic functions, the
first being through the differential operator ∂lf and the second by considering it as,
locally, the real part of a regular function.

Definition 4.1. The differential operator ∂lf is defined as

∂`f =
1

2
Γ̄r(df) =

1

2

(
∂f

∂t
− ei

∂f

∂xi

)
where Γr is the map

Γr(df) =
∂f

∂a
+ i

∂f

∂b
+ j

∂f

∂c
+ k

∂f

∂d
.

Theorem 4.2. If f is a harmonic real-valued function, then ∂lf is regular.

Proof. A full explanation is given in [10], following from ∆ = 4∂̄`∂`. �

Theorem 4.3. If u is a harmonic real-valued twice-differentiable function defined on
an star-shaped open set U ∈ H, there exists a regular function f on U such that <f = u.
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Proof. Without loss of generality, we assume that U contains the origin and is star-
shaped with respect to it, since we can easily adjust this for any other points. Thus we
will show that the function

f(q) = u(q) + 2Pu

∫ 1

0
s2∂`su(sq)q ds,

where Pu represents the pure quaternion (i.e. non-real) part, is regular in U . Since

Re

∫ 1

0
s2∂`u(sq)qds =

1

2

∫ 1

0
s2
{
t
∂u

∂t
(sq) + xi

∂u

∂xi
(sq)

}
ds

=
1

2

∫ 1

0
s2
d

ds
[u(sq)]ds

=
1

2
u(q)−

∫ 1

0
su(sq)ds,

we have

f(q) = 2

∫ 1

0
s2∂`u(sq)qds+ 2

∫ 1

0
su(sq)ds.

And because u and ∂`u have continuous partial derivatives in U , we can then differen-
tiate under the integral sign to obtain for q ∈ U

∂̄`f(q) = 2

∫ 1

0
s2∂̄` [∂`u(sq)] qds+

∫ 1

0
s2 {∂`u(sq) + ei∂`u(sq)ei} ds+ 2

∫ 1

0
s2∂̄`u(sq)ds.

However, ∂̄` [∂`u(sq)] = 1
4s∆u(sq) = 0 since u is harmonic in U, so

∂`u(sq) + ei∂`u(sq)ei = −2∂`u(sq)

= −2∂̄`u(sq).

Thus ∂̄`f = 0 in U and so f is regular. �

We can also construct regular functions from analytic complex functions.

Definition 4.4. For q ∈ H. define nq : C → H to be the embedding of the complex
numbers in the quaternions so that q is the image of a complex number ζ(q) lying in
the upper half-plane:

ηq(x+ iy) = x+
Pu q

|Puq|
y,

ζ(q) = Re +i|Pu q|.

Theorem 4.5. For a complex function f : C → C that is analytic on an open set
U ∈ C, we define f̄ : H→ H to be

f̄(q) = ηq ◦ f ◦ ζ(q),

and ∆f̄ is regular on ζ−1(U).
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Proof. We write r = Puq and u(x, y), v(x, y) for the real and imaginary parts respec-
tively of f(x+ yi). This gives

Re
[
∂̄`f̄(q)

]
=

1

2

{
∂

∂w
[u(w, |r|)]−� ·

[
r

|r|
v(w, |r|)

]}
− 1

2
u1(w, |r|)−

v(w, |r|)
|r|

− 1

2
v2(w, |r|)

Pu
[
∂̄`f̄(q)

]
=

1

2

{
�[u(w, |r|)] +

∂

∂t

[
r

|r|
v(w, |r|)

]
+ �×

[
r

|r|
v(w, |r|)

]}
=

1

2

{
r

|r|
u2(w, |r|) +

r

|r|
v1(w, |r|)

}
Because f is analytic, it obviously must satisfy the Cauchy-Riemann equations, meaning
that ∂u

∂x −
∂v
∂y = ∂u

∂y + ∂v
∂x = 0, so

∂̄`f = −v(w, |r|)
|r|

.

Then,

∂̄`∆f̄(q) = ∆∂̄`f(q) = −
(
∂2

∂w2
+

1

r

∂2

∂r2
r

)
v(w, r)

r

= −v11(w, r) + v22(w, r)

r
= 0,

so ∆f̄ is regular on ζ−1(U). �

5. Analogues to Integral and Series Results

Before presenting the quaternionic equivalents of the power series and Laurent series
expansions, which were developed by Fueter, we must define some special functions to
express them.

Definition 5.1. We define ν as an unordered set of n integers, each between 1 and 3;
the set of all ν for a given n is denoted by σn. Then the nth order differential operator
∂ν is

∂ν =
∂n

∂an1∂bn2∂cn3
.

Definition 5.2. Then, the functions Gν(q) and Pν(q) are defined as follows:

Gν(q) = ∂νG(q)

and

Pν(q) =
1

n!

∑
(aei1 − xi1) . . . (aein − xin) ,

where e1, e2, e3 = i, j, k and x1, x2, x3 = b, c, d and ν = {i1, . . . in} and Pν is the sum
over all permutations of the i′ks.
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Theorem 5.3 (Laurent series expansion). Given a function f which is regular on an
open set U except possibly at one point q0. Then, there is a neighborhood N of q0 such
that if q ∈ N , f(q) can be represented by the series

f(q) =

∞∑
n=0

∑
ν∈σn

{Pν (q − q0) aν +Gν (q − q0) bν}

which converges in an annulus

{q | r ≤ |q − q0| ≤ R} ∈ N.

The coefficients aν and bν are given by

aν =
1

2π2

∫
C
Gν (q − q0)Dqf(q),

bν =
1

2π2

∫
C
Pν (q − q0)Dqf(q).

where C is any closed 3-chain in U\ {q0} which is homologous to ∂B for some ball B
with q0 ∈ B ⊂ U (so that C has wrapping number 1 about q0 ).

Proof. The proof of this is long and technical and thus outside the scope of this paper,
but can be found in [10]. �

Theorem 5.4 (Cauchy’s theorem). If f is regular on every point of a 4-parallelepiped
C, ∫

∂C
Dq f = 0.

Corollary 5.5. If f is a right-regular function and g is a left-regular function, we have
that ∫

∂σ
fdQg = 0.

Theorem 5.6. For a hypersurface ∂σ in E4 with q0 ∈ ∂σ, we have∫
∂σ

∆ (q − q0)−1 dQ = 8π2.

Proof. See [10] and [1]. Note that for the surface element of a sphere with radius |q| in
four-dimensional Euclidean space, we have

dq = |q|2qdS

where dS is the surface element of the corresponding unit square. �

Now we can move to our main result, the Cauchy–Fueter integral formula.

Theorem 5.7 (Cauchy–Fueter integral formula). If f is regular on every point of a
(positively oriented) 4-parallelepiped C and q0 is a point within C,

f (q0) =
1

2π2

∫
∂C

(q − q0)−1

|q − q0|2
Dq f(q).
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Proof. When ε is small enough, the hypersurface centered at q0 defined by |q − q0| = ε
lies inside ∂σ. In the region between the surface of the ε -sphere and ∂σ both F and
∆4 (q− q0)

−1 are regular so that, using 5.5 we can show that

1

8π2

∫
∂σ
F (q)dQ∆4 (q − q0)−1 =

1

8π2

∫
|q−q0|=ε

F (q)dQ∆4 (q − q0)−1 .

We can find the surface element for the last integral by replacing q with q − q0 in the
equation from the proof of 5.6, giving

dq = |q − q0|2 (q − q0) dS.
The function F has to be sufficiently differentiable so that

F (q) = F (q0) +O (|q − q0|)
as |q − q0| → 0. Therefore, the limit of the last integral as ε→ 0 is

lim
4

8π2

∫
|q−q0|=1

F (q)ε2 (q − q0) ε−2 (q − q0)−1 dS

= lim
1

2π2

∫
|q−q0|=1

(F (q0) +O(ε)) dS = F (q0) .

�

Note that the elementary potential function in R4 is q−2, analogous to the complex

logarithm. Its Frechet derivative is G(q) = q−1

|q|2 , the key function in the integral formula,

just as the derivative of the logarithm is z−1.
Many other fundamental results from complex analysis transfer over as a consequence,

including the maximum modulus principle and Liouville’s theorem. The proofs are
extremely similar to their complex analogues.

Corollary 5.8 (Maximum modulus principle). Suppose that U ⊂ H is a connected open
set and f : U → H is regular. If there exists some z0 so that |f(z0)| ≥ |f(z)| for all
z ∈ U , then f is constant.

Corollary 5.9 (Liouville’s theorem). A bounded regular function is constant.

6. Applications

Quaternions and quaternionic functions have a range of applications, though not
quite as commonplace as complex numbers. They were initially often used for rotations
but displaced by vector algebra, though because of their computational efficiency have
had a resurgence recently. They are also sometimes useful in physics, where important
equations can be expressed concisely with them.

The higher dimensions of quaternions makes them convenient for representing 3D
geometry, spatial rotations in particular. Rotating by an angle θ around an axis defined
by the unit vector

~u = (ux, uy, uz) = uxi+ uyj + uzk

can be expressed by

q = e
θ
2
(uxi+uyj+uzk) = cos

θ

2
+ (uxi+ uyj + uzk) sin

θ

2
,
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based on Euler’s formula, thus expressing a single axis and the rotation. [6] These are
more compact than matrices and easier to compose, and by using four variables they
avoid the issue of losing one degree of freedom at certain configurations where axes align
(known as gimbal lock) like with three Euler angles. [8]

Over time, quaternions have attracted strong interest from physics, because their
symmetries and unusual properties may encapsulate real-world behavior. Relativity’s
Lorentz transforms and Minkowski space find elegant correspondences in quaternionic
analysis, although the physics required is beyond the scope of this paper. A detailed
treatise may be found in [2], but we can demonstrate here the relatively less technical
example of Maxwell’s equations:

∇ ·H = 0, ∇ ·E = ρ

1

c

∂H

∂t
+∇×E = 0

1

c

∂E

∂t
+ J = ∇×H

can be expressed with the operator �∗ = − i
c
δ
δt +∇ as

�∗(E + iH) = −ρ+
i

c
J.

To close our paper, here is the taffy-like result of extending the Julia set to quaternions:
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