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Abstract. Turán’s graph theorem is an elegant, crucial result in graph theory. We present five unique

proofs using different ideas, as well as short proofs of the simpler Mantel’s theorem. At the end we
introduce and prove other results, such as Ramsey’s theorem, from the field of extremal graph theory of

which Turán’s graph theorem is a foundational discovery.

1. What is Turán’s Graph Theorem

Turán’s graph theorem is simple to define and is a key result in graph theory, with many beautiful proofs.
Discovered in 1941, it was the starting point for the whole branch of extremal graph theory, which focuses
on essentially optimizing graphs: how many edges can one have while satisfying a certain condition?

The basic question answered by Turán’s graph theorem is: Suppose G is a simple graph that does not
contain a p-clique. What is the largest number of edges that G can have?

Definition 1.1. A p-clique in G is a complete subgraph of G on p vertices, denoted by Kp.

We also use Kn to denote, in general, any complete graph with n vertices.
In other words, we want to find the maximum number of edges that can be in a graph not containing a

complete subgraph with p vertices (a subgraph where every vertex is connected to every other one).
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Figure 1. An example of a graph containing a 4-clique.

An easy way to create a graph that doesn’t contain a p-clique is to divide the vertices into p− 1 subsets;
these should be disjoint, meaning every vertex is in exactly one subset. After partitioning the vertices like
this, we draw edges between all the pairs of vertices in different subsets, but never within any subset. This
means there cannot be a p-clique, because by the Pigeonhole Principle at least two of the vertices in the
clique would have to be from the same subset — and then they cannot be connected!

To maximize the number of edges, we must divide the vertices as evenly as possible between the different
subsets (such that none differ in size by more than 1). To prove this, suppose a graph has two subsets with
sizes n1 and n2, where n1 − n2 ≥ 2. Then we can move a vertex from n1 to n2. The resulting graph has
(n1−1)(n2+1) edges between the two subsets while the old graph has n1n2, and the total number of edges
with other subsets stays the same. Thus there are

(n1 − 1)(n2 + 1)− n1n2 = n1 − n2 − 1 ≥ 1
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more edges after moving the vertex. Applying this principle in general shows that we maximize the edges
in this kind of graph by having the subsets as equally sized as possible.

If n is divisible by p− 1, we can write the total number of edges as(
p− 1

2

)(
n

p− 1

)2

=

(
1− 1

p− 1

)
n2

2
.

Turán’s says that in general, this is indeed the maximum number of edges possible:

Theorem 1.2 (Turán). If a graph G = (V,E) on n vertices has no p-clique, p ≥ 2, then

|E| ≤
(
1− 1

p− 1

)
n2

2
.

We will give multiple proofs from [1] of the triangle-free case with Mantel’s theorem, followed by several
unique proofs of the full Turán’s graph theorem. Last but not least we will broaden our scope with topics
such as Ramsey numbers in extremal graph theory and an introduction to more complex extensions like
the Erdős–Stone theorem.

2. Simple Cases

We start with a simple case, where p equals 3: in other words, we find an upper bound for the number
of edges in a graph without triangles. (Note that p = 2 is a trivial case about graphs with no edges at all,
so we will skip over it.)

This result is known as Mantel’s theorem:

Theorem 2.1 (Mantel’s). Suppose G is a graph on n vertices without triangles. Then G has at most n2

4
edges, and equality holds if and only if n is even and G is the complete bipartite graph Kn/2,n/2.

First proof — Mantel. Let the set of vertices in G be V = {1, . . . , n}, and let the set of edges be E. Also,
we define di as the degree of a vertex i. Since each edge in the graph will be counted in the degrees of both
of its nodes,

∑
i∈V di = 2|E| (summing all the degrees gives twice the number of edges). Meanwhile, for

any edge ij we can say that di + dj ≤ n, because no vertex is counted in the degrees of both i and j — if a
vertex was connected to both of them, the graph would have a triangle. Thus summing over all edges we
have ∑

ij∈E

(di + dj) ≤ n|E|.

For any i, di will appear di times in this sum (once for every edge involving i), so we can rewrite as

n|E| ≥
∑
ij∈E

(di + dj) =
∑
i∈V

d2i .

Applying the Cauchy–Schwarz inequality on (d1, . . . , dn) and (1, . . . , 1) gives

n|E| ≥
∑
i∈V

d2i ≥ (
∑

di)
2

n
=

4|E|2

n
,

from which the result follows. When equality holds we have di = dj for all i, j, and since di + dj = n it
follows that di = n

2 . This and the condition that G is triangle-free immediately leads to the conclusion
that G = Kn/2,n/2. □

The next proof is even simpler, using only the inequality of arithmetic and geometric means, also known
simply as the AM–GM inequality.

Second proof — folklore. Let a be the size of a largest independent set (a set of vertices with no edges
between them) in G. Because G is triangle free, all the neighbors of a vertex i form an independent set
with size di, so di ≤ a for all i.
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Figure 2. The original graph G.

The set B = V \A with size b = n−a meets every edge of G, as there are no edges between two vertices
in A. Therefore if we count the edges by their end vertices in B, we have |E| ≤

∑
i∈B di. Since di ≤ a and

there are b vertices in B,
∑

i∈B di ≤ ab. Then by the AM–GM inequality,

|E| ≤
∑
i∈B

di ≤ ab ≤
(
a+ b

2

)2

=
n2

4
,

and the equality case is handled as last time. □

3. Proofs with Induction

First proof — Turán. We use induction on n. It is easy to show that the theorem is true when n < p, so
we turn our attention to where n ≥ p. Consider a graph G = (V,E) with a maximum number of edges. It
will contain (p− 1)-cliques, since it has as many edges as possible, so consider one (p− 1)-clique A and the
set B = V \A.

A has
(
p−1
2

)
edges, while we find an upper bound for the number of edges within B (eB), and the number

between A and B (eA,B). By induction we apply the theorem on B to give eB ≤ 1
2 (1−

1
p−1 )(n− p+ 1)2.

Since G has no p-clique, every vj ∈ B is adjacent to at most p − 2 vertices in A (otherwise it and p − 1
vertices in A would form a p-clique), and we obtain eA,B ≤ (p− 2)(n− p+ 1). Summing all this gives

|E| ≤
(
p− 1

2

)
+

1

2

(
1− 1

p− 1

)
(n− p+ 1)2 + (p− 2)(n− p+ 1),

which after some simple algebra reduces to

|E| ≤
(
1− 1

p− 1

)
n2

2
.

□

Second proof — Erdős. We use the structure of Turán graphs. Let vm ∈ V be a vertex with maximal
degree (i.e., no vertex in G has a higher degree). Let S be the set of neighbors of vm, and define T = V \S.
Since G does not contain a p-clique, and vm is adjacent to all vertices of S, we see that S cannot contain
a (p− 1)-clique.

We now construct a graph H on V , as shown in figures 2 and 3, which corresponds to G on S and
contains all edges between S and T , but no edges within T . In other words, T is an independent set in
H, so H has again no p-cliques as there cannot be two vertices from T in a clique. Let d′j be the degree
of vj in H. If vj ∈ S, then we have d′j ≥ dj by the construction of H, and for vj ∈ T , we see that
d′j = |S| = dm ≥ dj by the choice of vm. Thus |E(H)| ≥ |E|, and we can conclude that among all graphs
with a maximal number of edges, there must be one of the form of H. By induction, the graph induced by
S has no more edges than a suitable graph Kn1,...,np−2

on S. We have

|E| ≤ |E(H)| ≤ E(Kn1,...,np−1)

where np−1 = |T |, and the theorem follows from considering the edges in this type of graph. □
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Figure 3. The new, constructed graph H.

4. Proofs with Probability

These proofs use a maximizing argument and probability theory concepts.

Third proof — Motzkin and Straus. We consider a probability distribution w = (w1, . . . , wn) on the ver-
tices, i.e. an assignment of values wi ≥ 0 to the vertices, so that

∑n
wi = 1. We seek to maximize

f(w) =
∑

vivj∈E

wiwj .

For any distribution w, let vi and vj be a pair of nonadjacent vertices with weights wi, wj . Let si be the
sum of the weights of all vertices adjacent to vi, and similarly define sj for vj . We assume without loss of
generality that si ≥ sj . Now we move the weight from vj to vi, such that the new weight of vi is wi + wj

while the weight of vj drops to 0. For the new distribution w′ we have

f(w′) = f(w) + wjsi − wjsj ≥ f(w).

We can repeat this (reducing the number of vertices with a positive weight by one in each step) until there
are no nonadjacent vertices of positive weight anymore. At the end we conclude that there is an optimal
distribution with nonzero weights all on a clique, say of size k.

Next, if for example, w1 > w2 > 0, we can choose ε with 0 < ε < w1 − w2 and change w1 to w1 − ε
and w2 to w2 + ε. The new distribution w′ satisfies f(w′) = f(w) + ε(w1 − w2) − ε2 > f(w). Applying
this argument whenever adjacent vertices are unequal in weight, we find that the maximal value of f(w) is

attained with wi =
1
k on a k-clique and wi = 0 otherwise. Since a k-clique contains k(k−1)

2 edges, we obtain

f(w) =

(
k(k − 1)

2

)
1

k2
=

1

2

(
1− 1

k

)
.

Because this expression is increasing in k, we maximize it with k = p− 1 (since G has no p-cliques). So we
conclude

f(w) ≤ 1

2

(
1− 1

p− 1

)
for any distribution w. Specifically, we apply this for the uniform distribution given by wi =

1
n for all i,

giving
|E|
n2

= f

(
wi =

1

n

)
≤ 1

2

(
1− 1

p− 1

)
,

which is the same as the inequality in the theorem. □

Fourth proof — Alon and Spencer. Let G = (V,E) be any graph with vertices v1, . . . , vn. We define di as
the degree of vi. Then denote ω(G) to be the number of vertices in a largest clique, which we call the clique
number of G. We claim that

ω(G) ≥
n∑

i=1

1

n− di
.

To show this, we first choose a random permutation π = v1v2 . . . vn of the vertex set V , (where each
permutation has equal probability 1

n! to appear), and then consider a set Cπ as follows. We put a vertex
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vi into Cπ if and only if vi is adjacent to all preceding vertices vj(j < i). By definition, Cπ is a clique in G
since each vertex will be adjacent to the other members of the set.

Let X = |Cπ| be the random variable corresponding to the size of the set. We have X =
∑n

i=1 Xi,
where Xi is the indicator random variable of the vertex vi: Xi = 1 or Xi = 0 depending on whether or
not vi ∈ Cπ. Note that vi is in Cπ with respect to the permutation if and only if vi appears before all
n− 1− di vertices not adjacent to vi, i.e. if vi is the first in the permutation among vi and its n− 1− di
non-neighbors. The probability that this happens is 1

n−di
, so EXi =

1
n−di

. By linearity of expectation this
gives

E(|Cπ|) = EX =

n∑
i=1

EXi =

n∑
i=1

1

n− di
.

Since this is the average over many cliques formed by different permutations, there must be a clique of size
at least

∑n
i=1

1
n−di

and we have proven the original claim. Then apply the Cauchy–Schwarz inequality:(
n∑

i=1

aibi

)2

≤

(
n∑

i=1

a2i

)(
n∑

n=1

b2i

)
.

Setting ai =
√
n− di, bi =

1√
n−di

, we have aibi = 1 and thus

n2 ≤

(
n∑

i=1

(n− di)

)(
n∑

i=1

1

n− di

)
≤ ω(G)

n∑
i=1

(n− di)

By our conditions for G, ω(G) ≤ p− 1, while we also have
∑n

i=1 di = 2|E| as used earlier. Applying these
gives

n2 ≤ (p− 1)(n2 − 2|E|),
which is equivalent to Turán’s inequality. □

5. The Final Proof

Fifth proof — folklore. Let G be a graph on n vertices without a p-clique and with a maximal number of
edges. We claim that G does not contain any three vertices u, v, w such that vw is in E but not uv or uw.
Suppose this is false. Then there are two cases:

Case 1: du < dv or du < dw. We assume without loss of generality that du < dv. We duplicate v, i.e.
create a new vertex v′ with the same neighbors as v, and delete u. This new graph G′ does not have a
p-clique, but for the edge number we have

|E(G′)| = |E(G)|+ dv − du > |E(G)|,

implying that our original graph was not maximal: a contradiction.
Case 2: du ≥ dv and du ≥ dw. We duplicate u twice and delete v and w, once again producing a new

graph G′ with no p-clique and an edge number of

|E(G′)| = |E(G)|+ 2du − (dv + dw − 1) > |E(G)|,

a contradiction again.
It follows from our claim that two vertices u, v not being adjacent is in fact an equivalence relation:

u ∼ v ⇐⇒ uv /∈ E(G)

is clearly reflexive and symmetric, but the fact that uv /∈ E, uw /∈ E implies vw /∈ E proves transitivity. In
other words G is simply a complete multipartite graph under these conditions, so we are done! □

6. Extremal Graph Theory

Extremal graph theory has since been expanded by many mathematicians, including Paul Erdős (a
popular quip is that the theory was “developed and loved by Hungarians”). The common theme is the
same: optimize parameters like edges & vertices and find connections between constraints on a graph and
its resulting structure. We illustrate some of the other seminal results.

We first prove a well-known result about cliques and edge colorings.
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Theorem 6.1 (Ramsey). For any s, t there exists N = R(m,n) such that every red-blue coloring of the
edges of KN has a completely red Km subgraph or a completely blue Kn subgraph.

Specifically, we will show not only that R(m,n) exists but also that

R(m,n) ≤ R(m− 1, n) +R(m,n− 1).

Proof. We start with the simple case R(m, 2) = m, where either all edges of Km are red or a blue edge
exists giving a blue K2, and the symmetric R(2, n) = n.

Now, if R(m − 1, n) and R(m,n − 1) exist, then let N = R(m − 1, n) + R(m,n − 1) and consider an
arbitrary red-blue coloring of KN . For some vertex v, let A be the set of vertices connected by a red edge
and let B be the set of vertices connected by a blue edge to v.

Since |A| + |B| = N − 1, either |A| ≥ R(m − 1, n) or |B| ≥ R(m,n − 1). Suppose |A| ≥ R(m − 1, n).
Then by the definition of R(m− 1, n), either there is in A a subset AR of size m− 1 with all red edges —
which together with v yields a red Km — or there is a subset AB of size n with all blue edges. Similar logic
holds if |B| ≥ R(m,n− 1), and it follows that KN satisfies the (m,n)-property and our recursion relation
is true.

Looking at our starting values and recursion, we find the formula

R(m,n) ≤
(
m+ n− 2

m− 1

)
satisfies them from the binomial relation

(
n
k

)
=
(
n−1
k

)
+
(

n
k−1

)
. For the case of R(k, k) we have

R(k, k) ≤
(
2k − 2

k − 1

)
=

(
2k − 3

k − 1

)
+

(
2k − 3

k − 2

)
≤ 22k−3.

□

For over 60 years, this has remained essentially the best lower bound. In general, Ramsey numbers are
very hard to find with precision with current techniques. After decades of work, the value of R(5, 5) is still
only known to be between 43 and 48; in 2017, 49 was eliminated by computer verification, after checking
about 2 trillion different cases!

We now turn our attention to finding an upper bound for the Ramsey numbers R(k, k), i.e. finding a
number of vertices N as large as possible where there exists a coloring without a red or blue Kk. We use
probability methods to do this:

Theorem 6.2. For all k ≥ 2, the lower bound

R(k, k) ≥ 2
k
2

holds for the Ramsey numbers.

Proof. We have R(2, 2) = 2. Our upper bound gives R(3, 3) ≤ 6, and 6 is indeed minimal as shown by the
pentagon in 4 which does not satisfy the (3, 3)-property.

Figure 4. This coloring of K5 does not contain either a completely red or completely
blue triangle.
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Now assume that k ≥ 4. Suppose N < 2
k
2 , and consider all red-blue colorings, where we color each edge

independently red or blue with probability 1
2 . This way, all colorings are equally likely with probability

2−(
N
2 ). For some set of vertices A of size k, the probability of the event AR that all the edges in A are

colored red is 2−(
k
2). Thus, the probability pR for at least one k-set to be colored all red is bounded by

pR = P

 ⋃
|A|=k

AR

 ≤
∑
|A|=k

P (AR) =

(
N

k

)
2−(

k
2).

Now we apply N < 2
k
2 , k ≥ 4, and the inequality

(
N
k

)
≤ Nk

2k−1 for k ≥ 2, the latter of which is shown by(
n

k

)
=

n(n− 1) · · · (n− k + 1)

k!
≤ nk

k!
≤ nk

2k−1
.

Using these we can express the probability as(
N

k

)
2−(

k
2) ≤ Nk

2k−1
2−(

k
2) < 2

k2

2 −(k2)−k+1 = 2−
k
2+1 ≤ 1

2
.

Thus, pR < 1
2 , and by symmetry pB < 1

2 for the probability of some k vertices with all edges between them

colored blue. Therefore, pR + pB < 1 for N < 2
k
2 , so there must exist some coloring with no red or blue

Kk, meaning KN does not have the property (k, k). In other words, R(k, k) must be at least 2
k
2 . □

Suppose aliens invade the earth and threaten to obliterate it in a year’s time unless human
beings can find R(5, 5). We could marshal the world’s best minds and fastest computers,
and within a year we could probably calculate the value. If the aliens demanded R(6, 6),
however, we would have no choice but to launch a preemptive attack. (Erdős)

7. Extensions

Here are two notable ways that Turán’s graph theorem has been extended. The proofs of these theorems
are relatively long and will be omitted here, but are covered in detail in [2] and [3], with an overview in [4].
To state these results, we first define some common terms and notation in extremal graph theory.

Definition 7.1. The extremal number ex(n,H) is defined to be the maximum number of edges in a graph
with n vertices not containing a subgraph isomorphic to H.

Definition 7.2. The chromatic number χ(H) of a graph H is the smallest natural number c such that the
vertices of H can be colored with c colors and no two vertices of the same color are adjacent.

Now we proceed to the Erdős–Stone theorem, which bounds the number of edges in a graph that does
not contain a subgraph isomorphic to some H.

Theorem 7.3 (Erdős–Stone). For any fixed graph H,(
1− 1

χ(H)− 1
− o(1)

)
n2

2
≤ ex(n,H) ≤

(
1− 1

χ(H)− 1
+ o(1)

)
n2

2
.

The o(1) here simply denotes a term that tends towards 0 as n → ∞.
Another interesting extension is the hypergraph Turán problem, which concerns hypergraphs: general-

izations of graphs in which edges do not have to connect only 2 vertices, but can join any number of them.
These structures are far more complex to analyze, but we can obtain the following bound:

Theorem 7.4. Let Kr
s denote the complete r-graph on s vertices. (An r-graph is one in which each edge

connects r vertices.) Then(
1−

(
r − 1

s− 1

)r−1

− o(1)

)(
n

r

)
≤ ex (n,Kr

s ) ≤

(
1− 1(

s−1
r−1

) + o(1)

)(
n

r

)
.
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