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Reed–Solomon Codes

History

Development

Development

Reed–Solomon codes were developed at MIT by Irving S.
Reed and Gustave Solomon in 1960

Originally, they were designed to use a variable generator
polynomial to encode a message, then decode potential
polynomials by looking at subsets of the encoded message

By 1963, a faster scheme was developed based on a fixed
generator polynomial

This variation of RS codes is also technically a type of BCH
code: a family of codes invented independently by A.
Hocquenghem in 1959 and R.C. Bose & D.K. Ray-Chaudhuri
in 1960
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Applications

Applications over the years

In 1977, Reed–Solomon codes found a
major application in the communications
for the Voyager program — transmitting
data from interstellar space, tens of
billions of km from the Sun

Later applications include CDs, DVDs,
QR codes, digital broadcasts, and storage
systems

Newer, related BCH codes are also
popular in flash drives and SSDs

Advantage when errors occur in bursts,
since they can be corrected as a single
error
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Mathematics

Galois Fields

Review: Galois Fields

Reed–Solomon codes rely on finite field (aka Galois field)
polynomials. To construct a finite field of size pm we find a
irreducible polynomial in Zp[x ] of degree m, and define

GF (pm) = Zp[x ]/(q(x)).

For Reed–Solomon codes, we use a field GF (2m), so our
polynomials will be of the form a0x

0 + a1x
1 + · · ·+ aix

i ,
where ai is either 0 or 1

This means we can express each polynomial’s coefficients as a
corresponding binary string: x3 + x + 1 = 1011

Addition is the same as subtraction:
0 + 0 = 1 + 1 = 0, 1 + 0 = 0 + 1 = 1 (equivalent to the XOR
binary operation); multiplication and division is mod q(x)

All nonzero elements can be expressed as powers of a primitive
element α — a generator of the cyclic group (GF (2m)∗, ·)
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Encoding

Constructing a codeword

There are various encoding methods for Reed–Solomon codes:
the original method was to interpret a binary message as the
coefficients of a polynomial (so 1011 would be x3 + x + 1)
and evaluate the polynomial at several points — the values
would be the codeword to be sent

Another method uses Lagrange interpolation to calculate a
polynomial with specific values at certain points,
corresponding to the message

Possibly the most common method is to interpret the message
as a polynomial, but then multiply it by a generator
polynomial to obtain the codeword: this is the “BCH view”
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Encoding

Codewords, continued

Specifically for BCH: for a code with a block size of n, a
message size of k, and a symbol size of q bits, we encode the
message as a polynomial p(x) and multiply by a generator
polynomial

g(x) = (x − α)(x − α2) . . . (x − αn−k)

where α is a primitive element — in other words, the roots of
this polynomial are designed to be consecutive elements of the
Galois field



Reed–Solomon Codes

Mathematics

Decoding & Error Correction

Correcting errors

At least t = n − k errors can be detected, and ⌊t/2⌋ can be
corrected

We will focus on the BCH-based decoders, since these are the
fastest and most popular

These in general work by evaluating the codeword at the zeros
of the generator polynomial, which gives values (the
“syndromes”) that can be used to compute the number of
errors as well as a polynomial that gives the locations of errors

If values are all 0, there’s no errors — otherwise we have to
do some math

Commonly used algorithms for finding error locations are PGZ
(Peterson–Gorenstein–Zierler) and Berlekamp–Massey
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Decoding & Error Correction

PGZ algorithm

Seek to calculate error locator polynomial coefficients: find

Λ(x) = 1 + λ1x + λ2x
2 + · · ·+ λvx

v

Start by guessing v = t, and expect at least 2t syndromes
sc , . . . , sc+2t−1

Build a matrix

Sv×v =


sc sc+1 . . . sc+v−1

sc+1 sc+2 . . . sc+v

...
...

. . .
...

sc+v−1 sc+v . . . sc+2v−2
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Mathematics

Decoding & Error Correction

PGZ algorithm, continued

Also build vectors

Cv×1 =


sc+v

sc+v+1

...
sc+2v−1

 ,Λv×1 =


λv

λv−1

...
λ1


Λ gives the coefficients of the unknown polynomial, so we try
to solve the equation

Sv×vΛv×1 = −Cv×1

If the determinant of Sv×v is 0, keep lowering v until a
solvable matrix is obtained — this will give the values of Λ
and hence the error locator polynomial
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PGZ algorithm, continued

Finally, factoring the polynomial in the form
Λ(x) =

(
αi1x − 1

) (
αi2x − 1

)
· · ·

(
αiv x − 1

)
(via other

computer algorithms) gives the error locations as the powers
αi1 , . . . , αiv

Generally the last step is to solve another system of equations
to get the error values

For binary, just invert the bits at these locations, and errors
are corrected — original message obtained!
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PGZ algorithm flowchart
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Application: QR Codes

Introduction

Introduction to QR codes

QR (quick response) codes were invented
in 1994 by the DENSO Corporation, a
Toyota subsidiary

They’re present everywhere, for instance
allowing people to quickly find a form or
scan tickets just by taking a picture

Reed–Solomon codes allow for flexibility:
with a small increase in size, the error
correction lets the data be retrieved even
if many squares are unreadable

Sometimes, a whole logo covers the
middle of a QR code — with no effect on
scanning!
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Design

Design of a QR code

There are various versions/sizes of QR codes — we will look at a
fairly simple one, version 4
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Application: QR Codes

Design

Design explained

The data is in 4× 2 blocks starting from the bottom right: it
goes up and then back down, snaking throughout the matrix

Bits are in a zigzag order within each block, and encoded with
a Reed–Solomon code (of course!)

Various different finder patterns are used to let scanners
detect and align the grid: large finder patterns in 3 corners, an
alignment pattern in the bottom right, and a row and column
of timing patterns

Format info is included twice in specific areas, to ensure it can
be read — it includes the error correction level and which
masking pattern is used

A masking pattern is overlaid onto the data matrix to make
the black and white squares more evenly distributed and
readable, by inverting certain regions
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Illustrations

Data in a QR code
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Illustrations

QR code masking patterns
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Summary

Concluding remarks

Key takeaways:

Reed–Solomon codes are a crucial application of abstract
algebra to a problem encountered everywhere

Many parts of daily life rely on brilliant algorithms we often
don’t think about

Topics like Galois fields are fascinating on their own but can
also be utilized in unexpected places
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References/further reading

http://simoneparisotto.com/math/misc/qrcode/qrcode.pdf

https://atcm.mathandtech.org/EP2021/invited/21891.pdf

http://user.xmission.com/~rimrock/Documents/Galois%20Fields%

20and%20Cyclic%20Codes.pdf

https://web.ntpu.edu.tw/~yshan/BCH_code.pdf

https://pages.jh.edu/bcooper8/sigma_files/ERROR_CONTROL_

CODING/06dec.pdf

Thank you for listening!
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